jee main syllabus 2021

JEE Main Syllabus 2021: Section-wise Detail Topics

JEE Main 2020 is around the corner, and with month-long national lockdown, some students are now thinking about JEE main 2021 syllabus. Many experts and students are currently discussing the JEE Main 2021 syllabus, whether the syllabus should be reduced or not as the lockdown has reduced the number of days for preparing for next year JEE main exam.

The official notification of jee man is generally released in September-October after that students start preparing for jee main exam. The aspirant now can focus on all the engineering entrance exams. However, the situation is little different as the board exam are postponed, and students don’t have enough time for preparing for the exam

COVID -19 has created a more significant impact on the education industry, as of April is always the critical month of any engineering aspirant. Although CBSE has decided to reduce the syllabus, NTA is yet to decide on reducing the syllabus of JEE main.

Will NTA reduce the JEE Main 2021 Syllabus?

JEE Main 2021 aspirants are demanding jee main syllabus to be reduced because of the less time this year for preparation. All these situations will be evident by NTA only; however, the reduction in the syllabus is speculated.

According to the experts, NTA may deduce in reducing the syllabus because of less number of days for jee main preparation because of COVID-19. However, jee main aspirants are advised to prepare as they use to do it earlier.

B.E/B.Tech Syllabus JEE Main 2021

  • B.E/B.Tech JEE Main paper will consist of three sections: Physics, Chemistry, Mathematics.
  • A total number of question asked are 75 questions (25 questions in each section).
  • The time limit is 3 hours.
  • All the question will be MCQ based with awarding four marks for every right answer.
  • There will be a negative mark for every incorrect answer. 

Section-wise specific topics under each section have been provided below.

JEE Main 2021 Physics Syllabus

Given below is the unit wise detailed topics to plan out the preparation strategy 

UnitsTopics
Unit 1: Physics And MeasurementPhysics, technology and society, S I units, Fundamental and derived units
Least count, accuracy and precision of measuring instruments,
Errors in measurement,
Dimensions of Physical quantities, dimensional analysis and its applications
Unit 2: KinematicsFrame of reference
Motion in a straight line: Position-time graph, speed and velocity
Uniform and non-uniform motion, average speed and instantaneous velocity
Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion.
Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector
Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion
Unit 3: Laws Of MotionForce and Inertia,
Newton’s First Law of motion; Momentum, Newton’s Second Law of motion; Impulse; Newton’s Third Law of motion.
Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction.
Dynamics of uniform circular motion: Centripetal force and its applications.
Unit 4: Work, Energy And PowerWork done by a constant force and a variable force; kinetic and potential energies, work energy theorem, power.
Potential energy of a spring, conservation of mechanical energy, conservative and non-conservative forces; Elastic and inelastic collisions in one and two dimensions.
Unit 5: Rotational MotionCentre of mass of a two-particle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration.
Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications.
Rigid body rotation, equations of rotational motion.
Unit 6: GravitationThe universal law of gravitation.
Acceleration due to gravity and its variation with altitude and depth.
Kepler’s laws of planetary motion.
Gravitational potential energy; gravitational potential.
Escape velocity.
Orbital velocity of a satellite. Geo-stationary satellites.
Unit 7: Properties Of Solids And LiquidsElastic behaviour, Stress-strain relationship, Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity.
Pressure due to a fluid column; Pascal’s law and its applications.
Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, Reynolds number. Bernoulli’s principle and its applications.
Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles and capillary rise.
Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat.
Heat transfer-conduction, convection and radiation, Newton’s law of cooling.
Unit 8: ThermodynamicsThermal equilibrium, zeroth law of thermodynamics, concept of temperature.
Heat, work and internal energy.
First law of thermodynamics.
Second law of thermodynamics: reversible and irreversible processes.
Carnot engine and its efficiency.
Unit 9: Kinetic Theory Of GasesEquation of state of a perfect gas, work done on compressing a gas.
Kinetic theory of gases – assumptions, concept of pressure.
Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path, Avogadro’s number.
Unit 10: Oscillations And WavesPeriodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring -restoring force and force constant; energy in S.H.M. – kinetic and potential energies; Simple pendulum – derivation of expression for its time period; Free, forced and damped oscillations, resonance
Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound
Unit 11: ElectrostaticsElectric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field. -Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. The Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field. -Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.
Electric charges: Conservation of charge, Coulomb’s law-forces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.
Unit 12: Current ElectricityElectric current, Drift velocity, Ohm’s law, Electrical resistance, Resistances of different materials, V-I characteristics of Ohmic and non ohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance.
Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel.
Kirchhoff’s laws and their applications.
Wheatstone bridge, Metre bridge.
Potentiometer – principle and its applications.
Unit 13: Magnetic Effects Of Current And MagnetismBiot – Savart law and its application to current carrying circular loops. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.
Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter.
Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances.
Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.
Unit 14: Electromagnetic Induction And Alternating CurrentsElectromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents.
Self and mutual inductance.
Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current.
AC generator and transformer.
Unit 15: Electromagnetic WavesElectromagnetic waves and their characteristics. Transverse nature of electromagnetic waves.
Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X Rays, gamma rays).
Applications of e.m. waves.
Unit 16: OpticsReflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers. Wave opticswavefront and Huygens’ principle, Laws of reflection and refraction using Huygens principle. Interference, Young’s double slit experiment and expression for fringe .
Diffraction due to a single slit, of central maximum.
Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids.
Unit 17: Dual Nature Of Matter And radiationDual nature of radiation.
Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light.
Matter waves-wave nature of particles, de Broglie relation.
Davisson-Germer experiment.
Unit 18: Atoms And NucleiAlpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum.
Composition and size of nucleus, atomic masses, isotopes, isobars; isotones.
Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.
Unit 19: Electronic DevicesSemiconductors; semiconductor diode: I-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator.
Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR).
Transistor as a switch.
Unit 20: Communication SystemsPropagation of electromagnetic waves in the atmosphere; Sky and space wave propagation,
Need for modulation,
Amplitude and Frequency Modulation,
Band of signals,
Band of Transmission medium,
Basic Elements of a Communication System (Block Diagram only).

JEE Main 2021 Mathematics Syllabus

Given below is the unit wise detailed topics to plan out the preparation strategy :

UnitsTopics
Unit 1: Sets, relations and functionsSets and their representation
Union, intersection, and complement of sets and their algebraic properties
Power set; Relation, Types of relations, equivalence relations, functions; One-one, into and onto functions, the composition of functions.
Unit 2: Complex numbers and quadratic equationsComplex numbers as ordered pairs of reals,
Representation of complex numbers in the form a+ib and their representation in a plane,
Argand diagram,
algebra of complex numbers,
modulus and argument (or amplitude) of a complex number,
square root of a complex number,
triangle inequality,
Quadratic equations in real and complex number systems and their solutions.
The relation between roots and coefficients, nature of roots, the formation of quadratic equations with given roots.
Unit 3: Matrices and determinantsMatrices,
Algebra of matrices,
Types of matrices,
Determinants and matrices of order two and three.
Properties of determinants,
Evaluation of determinants,
Area of triangles using determinants.
Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations,
Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices.
Unit 4: Permutations and combinationsFundamental principle of counting,
Permutation as an arrangement and combination as selection,
Meaning of P (n,r) and C (n,r),
Simple applications.
Unit 5: Mathematical inductionPrinciple of Mathematical Induction and its simple applications
Unit 6: Binomial theorem and its simple applicationsBinomial theorem for a positive integral index,
General term and middle term,
Properties of Binomial coefficients
Simple applications
Unit 7: Sequences and seriesArithmetic and Geometric progressions,
Insertion of arithmetic,
Geometric means between two given numbers
Relation between A.M. and G.M. sum upto n terms of special series: S n, S n2, Sn3
Arithmetic – Geometric progression
UNIT 8: Limit, continuity and differentiabilityReal – valued functions,
Algebra of functions,
Polynomials,
Rational,
Trigonometric,
Logarithmic and exponential functions,
Inverse functions
Graphs of simple functions
Limits, continuity and differentiability
Differentiation of the sum, difference, product and quotient of two functions
Differentiation of trigonometric,
Inverse trigonometric,
Logarithmic,
Exponential,
Composite and implicit functions
Derivatives of order upto two
Rolle’s and Lagrange’s Mean Value Theorems
Applications of derivatives: Rate of change of quantities, monotonic – increasing and decreasing functions,
Maxima and minima of functions of one variable,
Tangents and normals
Unit 9: Integral calculusIntegral as an anti – derivative.
Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions.
Integration by substitution, by parts and by partial fractions. Integration using trigonometric identities.
Evaluation of simple integrals of the type Integral as limit of a sum.
Fundamental Theorem of Calculus.
Properties of definite integrals.
Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.
Unit 10: Differential equationsOrdinary differential equations, their order and degree.
Formation of differential equations.
The solution of differential equations by the method of separation of variables, solution of homogeneous and linear differential equations of the type: dy/dx+p(x)y=q(x)
Unit 11: Co-ordinate geometryCartesian system of rectangular co-ordinates 10 in a plane,
Distance formula,
Section formula,
Locus and its equation,
Translation of axes,
Slope of a line,
Parallel and perpendicular lines,
Intercepts of a line on the coordinate axes.

Straight lines: Various forms of equations of a line, intersection of lines, angles between two lines, conditions for concurrence of three lines, distance of a point from a line, equations of internal and external bisectors of angles between two lines, coordinates of centroid, orthocentre and circumcentre of a triangle, equation of family of lines passing through the point of intersection of two lines.

Circles, conic sections: Standard form of equation of a circle, general form of the equation of a circle, its radius and centre, equation of a circle when the end points of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent. Sections of cones, equations of conic sections (parabola, ellipse and hyperbola) in standard forms, condition for y = mx + c to be a tangent and point (s) of tangency.
Unit 12: Three dimensional geometryCoordinates of a point in space, distance between two points, section formula, direction ratios and direction cosines, angle between two intersecting lines.
Skew lines, the shortest distance between them and its equation.
Equations of a line and a plane in different forms, intersection of a line and a plane, coplanar lines.
Unit 13: Vector algebraVectors and scalars,
Addition of vectors,
Components of a vector in two dimensions and three dimensional space,
Scalar and vector products, scalar and vector triple product.
Unit 14: Statistics and probabilityMeasures of Dispersion: Calculation of mean, median, mode of grouped and ungrouped data calculation of standard deviation, variance and mean deviation for grouped and ungrouped data. Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s theorem, probability distribution of a random variate, Bernoulli trials and Binomial distribution.
Unit 15: TrigonometryTrigonometric identities and equations
Trigonometrical functions
Inverse trigonometrical functions and their properties
Heights and Distances
Unit 16: Mathematical reasoningStatements, logical operations and, or, implies, implied by, if and only if
Understanding of tautology, contradiction, converse and contrapositive

JEE Main 2021 Chemistry Syllabus

Given below is the unit wise detailed topics to plan out the preparation strategy :

UnitsTopics
Section A:Physical Chemistry
Unit 1: Some Basic Concepts In ChemistryMatter and its nature, Dalton’s atomic theory
Concept of atom, molecule, element and compound
Physical quantities and their measurements in Chemistry, precision and accuracy, significant figures, S.I. Units, dimensional analysis
Laws of chemical combination
Atomic and molecular masses, mole concept, molar mass, percentage composition, empirical and molecular formulae
Chemical equations and stoichiometry
Unit 2: States Of MatterClassification of matter into solid, liquid and gaseous states.
Gaseous State: Measurable properties of gases
Gas laws – Boyle’s law, Charle’s law, Graham’s law of diffusion, Avogadro’s law, Dalton’s law of partial pressure
Concept of Absolute scale of temperature; Ideal gas equation
Kinetic theory of gases (only postulates)
Concept of average, root mean square and most probable velocities
Real gases, deviation from Ideal behaviour, compressibility factor and van der Waals equation

Liquid State: Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).

Solid State: Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea)
Bragg’s Law and its applications
Unit cell and lattices, packing in solids (fcc, bcc and hcp lattices), voids, calculations involving unit cell parameters, imperfection in solids
Electrical, magnetic and dielectric properties
Unit 3: Atomic StructureThomson and Rutherford atomic models and their limitations
Nature of electromagnetic radiation, photoelectric effect
Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model
Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle.

Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features, concept of atomic orbitals as one electron wave functions
various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance
shapes of s, p and d – orbitals, electron spin and spin quantum number
Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.
Unit 4: Chemical Bonding And Molecular StructureKossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding: Concept of electronegativity, Fajan’s rule, dipole moment
Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules
Quantum mechanical approach to covalent bonding: Valence bond theory – Its important features, concept of hybridization involving s, p and d orbitals
Resonance
Molecular Orbital Theory – Its important features, LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy
Unit 5: Chemical ThermodynamicsFundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, types of processes.
First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity
Hess’s law of constant heat summation
Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration, ionization and solution
Second law of thermodynamics
Spontaneity of processes
DS of the universe and DG of the system as criteria for spontaneity, Dgo (Standard Gibbs energy change) and equilibrium constant
Unit 6: SolutionsDifferent methods for expressing concentration of solution – molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions
Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure
Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance
Unit 7: Equilibrium​Meaning of equilibrium, the concept of dynamic equilibrium.

Equilibria involving physical processes: Solid-liquid, liquid – gas and solid-gas equilibria, Henry’s law, general characteristics of equilibrium involving physical processes.
Equilibria involving chemical processes: Law of chemical equilibrium, equilibrium constants (Kp and Kc) and their significance, the significance of DG and DGo in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, the effect of catalyst; Le Chatelier’s principle.

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted – Lowry and Lewis) and their ionization, acid-base equilibria (including multi stage ionization) and ionization constants, ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.
Unit 8: Redox Reactions And ElectrochemistryElectronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.

Electrolytic and metallic conduction, conductance in electrolytic solutions, specific and molar conductivities and their variation with concentration: Kohlrausch’s law and its applications.

Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement
Nernst equation and its applications; Relationship between cell potential and Gibbs’ energy change
Dry cell and lead accumulator; Fuel cells.
Unit 9: Chemical KineticsRate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catalyst
elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first-order reactions, their characteristics and half-lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).
Unit 10: Surface ChemistryAdsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlich and Langmuir adsorption isotherms, adsorption from solutions.

Colloidal state- distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic
multi molecular, macromolecular and associated colloids (micelles), preparation and properties of colloids – Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation
Emulsions and their characteristics
Section B:Inorganic Chemistry
Unit 11: Classification Of Elements And Periodicity In PropertiesModem periodic law and present form of the periodic table, s, p, d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity.
Unit 12: General Principles And Processes Of Isolation Of MetalsModes of occurrence of elements in nature, minerals, ores; Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.
Unit 13: HydrogenPosition of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen
Physical and chemical properties of water and heavy water
Structure, preparation, reactions and uses of hydrogen peroxide
Hydrogen as a fuel
Unit 14: S – Block Elements (Alkali And Alkaline Earth Metals)Group – 1 and 2 Elements: General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.

Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.
Unit 15: P – Block ElementsGroup – 13 to Group 18 Elements General Introduction: Electronic configuration and general trends in physical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

Groupwise study of the p – block elementsGroup – 13: Preparation, properties and uses of boron and aluminium; properties of boric acid, diborane, boron trifluoride, aluminium chloride and alums.
Group – 14: Allotropes of carbon, tendency for catenation; Structure & properties of silicates, and zeolites.
Group – 15: Properties and uses of nitrogen and phosphorus; Allotropic forms of phosphorus; Preparation, properties, structure and uses of ammonia, nitric acid, phosphine and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of phosphorus.
Group – 16: Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur; Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacids of sulphur.
Group – 17: Preparation, properties and uses of hydrochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.
Group –18: Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.
UNIT 16: D – And F – Block ElementsTransition Elements: General introduction, electronic configuration, occurrence and characteristics, general trends in properties of the first-row transition elements – physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4.

Inner Transition Elements: Lanthanoids – Electronic configuration, oxidation states and lanthanide contraction.

Actinoids – Electronic configuration and oxidation states.
Unit 17: Co-Ordination CompoundsIntroduction to coordination compounds, Werner’s theory
ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism
Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).
Unit 18: Environmental ChemistryEnvironmental pollution – Atmospheric, water and soil.
Atmospheric pollution – Tropospheric and Stratospheric
Tropospheric pollution – Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention; Greenhouse effect and Global warming; Acid rain;
Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects and prevention.
Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer – its mechanism and effects.
Water Pollution – Major pollutants such as pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.
Soil pollution – Major pollutants such as Pesticides (insecticides, herbicides and fungicides), their harmful effects and prevention. Strategies to control environmental pollution.
Section C:Organic Chemistry
Unit 19: Purification And Characterisation Of Organic CompoundsPurification – Crystallization, sublimation, distillation, differential extraction and chromatography – principles and their applications

Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens.

Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.

Calculations of empirical formulae and molecular formulae; Numerical problems in organic quantitative analysis.
Unit 20: Some Basic Principles Of Organic ChemistryTetravalency of carbon; Shapes of simple molecules – hybridization (s and p); Classification of organic compounds based on functional groups: – C = C –, – C h C – and those containing halogens, oxygen, nitrogen and sulphur; Homologous series; Isomerism – structural and stereoisomerism.

Nomenclature (Trivial and IUPAC) Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles. Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance and hyperconjugation.
Unit 21: HydrocarbonsClassification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions. Alkanes – Conformations: Sawhorse and Newman projections (of ethane); Mechanism of halogenation of alkanes.

Alkenes – Geometrical isomerism; Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization.

Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.

Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity; Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation and acylation, directive influence of the functional group in mono-substituted benzene.
Unit 22: Organic Compounds Containing HalogensGeneral methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions.

Uses; Environmental effects of chloroform & iodoform.
Unit 23: Organic Compounds Containing OxygenGeneral methods of preparation, properties, reactions and uses.
Alcohols, Phenols And EthersAlcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.
Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration and sulphonation, Reimer – Tiemann reaction.
Ethers: Structure.
Aldehyde and Ketones: Nature of carbonyl group
Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones
Important reactions such as – Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); the acidity of r – hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.
Carboxylic AcidsAcidic strength and factors affecting it.
Unit 24: Organic Compounds Containing NitrogenGeneral methods of preparation, properties, reactions and uses.
Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.
Diazonium Salts: Importance in synthetic organic chemistry.
Unit 25: PolymersGeneral introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization
Natural and synthetic rubber and vulcanization
some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.
UNIT 26: BiomoleculesGeneral introduction and importance of biomolecules.
Carbohydrates – Classification: aldoses and ketoses; monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose and maltose).
Proteins – Elementary Idea of r – amino acids, peptide bond, polypeptides; Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
Vitamins – Classification and functions.
Nucleic Acids – Chemical constitution of DNA and RNA. Biological functions of nucleic acids.
UNIT 27: Chemistry in Everyday LifeChemicals in medicines – Analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamine – their meaning and common examples.

Chemicals in food – Preservatives, artificial sweetening agents – common examples. Cleansing agents – Soaps and detergents, cleansing action.
UNIT 28: Principles Related To Practical ChemistryDetection of extra elements (N, S, halogens) in organic compounds; Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.

The chemistry involved in the preparation of the following: Inorganic compounds: Mohr’s salt, potash alum.
Organic compounds: Acetanilide, p nitroacetanilide, aniline yellow, iodoform.

Chemistry involved in the titrimetric exercises – Acids bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4.

Chemical principles involved in the qualitative salt analysis: Cations – Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+. Anions- CO3 2-, S2-, SO4 2-, NO2-, NO3-, CI -, Br, I. (Insoluble salts excluded).
Chemical principles involved in the following experiments:Enthalpy of solution of CuSO4
Enthalpy of neutralization of strong acid and strong base.
Preparation of lyophilic and lyophobic sols.
Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature.

3 thoughts on “JEE Main Syllabus 2021: Section-wise Detail Topics

  1. Greetings from Idaho! I’m bored to death at work so I decided to check out your website on my iphone during lunch break. I enjoy the information you provide here and can’t wait to take a look when I get home. I’m surprised at how quick your blog loaded on my phone .. I’m not even using WIFI, just 3G .. Anyways, amazing blog!

  2. Normally I don’t read article on blogs, however I wish to say that this write-up very compelled me to try and do it! Your writing style has been amazed me. Thank you, very great article.|

Leave a Reply

Your email address will not be published. Required fields are marked *